Online exam — Functional Analysis (WBMA033-05)

Tuesday 30 March 2021, 15.00h–18.00h CEST (plus 30 minutes for uploading) University of Groningen

Instructions

- 1. Only references to the lecture notes and slides are allowed. References to other sources are not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.
- 4. Write both your name and student number on the answer sheets!
- 5. This exam comes in two versions. Both versions consist of five problems of equal difficulty.

Make version 1 if your student number is odd.

Make version 2 if your student number is even.

For example, if your student number is 1277456, which is even, then you have to make version 2.

6. Please submit your work as a single PDF file.

Version 1 (for odd student numbers)

Problem 1 (5 + 10 + 5 = 20 points)

Equip the linear space $\mathcal{C}([0,1],\mathbb{K})$ with the following norms:

$$||f||_1 = \int_0^1 |f(x)| \, dx$$
 and $||f||_3 = \left(\int_0^1 |f(x)|^3 \, dx\right)^{1/3}$.

- (a) Show that $||f||_1 \leq ||f||_3$ for all $f \in \mathcal{C}([0,1],\mathbb{K})$.
- (b) Consider the sequence (f_n) given by

$$f_n(x) = \begin{cases} n^{1/3} & \text{if } 0 \le x < 1/n, \\ x^{-1/3} & \text{if } 1/n \le x \le 1. \end{cases}$$

Compute $||f_n||_1$ and $||f_n||_3$ for all $n \in \mathbb{N}$.

(c) Are the norms $\|\cdot\|_1$ and $\|\cdot\|_3$ equivalent?

Problem 2 (5 + 3 + 7 + 5 = 20 points)

Consider the following linear operator:

$$T: \mathcal{C}([0,1],\mathbb{K}) \to \mathcal{C}([0,1],\mathbb{K}), \quad Tf(x) = f(x^2).$$

On the space $\mathcal{C}([0,1],\mathbb{K})$ we take the sup-norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

- (a) Compute the operator norm of T.
- (b) Show that $\lambda = 1$ is an eigenvalue of T.
- (c) Is T invertible?
- (d) Is T compact?

Problem 3 (12 points)

Let X and Y be Banach spaces, and let $T \in L(X, Y)$. Assume that

$$f \circ T \in X'$$
 for all $f \in Y'$.

(Clarification: $(f \circ T)(x) = f(Tx)$ for all $x \in X$.)

Use the Uniform Boundedness Principle to prove that T is bounded.

See next page for problems 4 and 5...

Problem 4 (8 + 6 + 6 + 8 = 28 points)

- Let X be a Hilbert space over \mathbb{C} , and assume that $T \in B(X)$.
- (a) Show that there exist selfadjoint operators $U, V \in B(X)$ such that T = U + iV.
- (b) Show that T is normal if and only if UV = VU.
- For parts (c) and (d) assume that T is normal.
- (c) Show that $||Tx||^2 = ||Ux||^2 + ||Vx||^2$ for all $x \in X$.
- (d) Show that if $0 \in \rho(U) \cup \rho(V)$, then $0 \in \rho(T)$.

Problem 5 (10 points)

Equip the linear space $X = \mathcal{C}([-1, 1], \mathbb{C})$ with the following norm:

$$||f|| = \int_{-1}^{1} |f(x)| \, dx, \qquad f \in X.$$

Let $g(x) = e^{3ix}$. Prove that there exists a functional $\varphi \in X'$ such that

 $\varphi(g) = 4 - 2i$ and $\|\varphi\| = \sqrt{5}$.

End of test ("version 1", 90 points)

Version 2 (for even student numbers)

Problem 1 (5 + 10 + 5 = 20 points)

Equip the linear space $\mathcal{C}([0,1],\mathbb{K})$ with the following norms:

$$||f||_1 = \int_0^1 |f(x)| \, dx$$
 and $||f||_5 = \left(\int_0^1 |f(x)|^5 \, dx\right)^{1/5}$.

- (a) Show that $||f||_1 \leq ||f||_5$ for all $f \in \mathcal{C}([0,1],\mathbb{K})$.
- (b) Consider the sequence (f_n) given by

$$f_n(x) = \begin{cases} n^{1/5} & \text{if } 0 \le x < 1/n, \\ x^{-1/5} & \text{if } 1/n \le x \le 1. \end{cases}$$

Compute $||f_n||_1$ and $||f_n||_5$ for all $n \in \mathbb{N}$.

(c) Are the norms $\|\cdot\|_1$ and $\|\cdot\|_5$ equivalent?

Problem 2 (5 + 3 + 7 + 5 = 20 points)

Consider the following linear operator:

$$T: \mathfrak{C}([0,1],\mathbb{K}) \to \mathfrak{C}([0,1],\mathbb{K}), \quad Tf(x) = f(\sqrt{x}).$$

On the space $\mathcal{C}([0,1],\mathbb{K})$ we take the sup-norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

- (a) Compute the operator norm of T.
- (b) Show that $\lambda = 1$ is an eigenvalue of T.
- (c) Is T invertible?
- (d) Is T compact?

Problem 3 (12 points)

Let X and Y be Banach spaces, and let $T \in L(X, Y)$. Assume that

$$f \circ T \in X'$$
 for all $f \in Y'$.

(Clarification: $(f \circ T)(x) = f(Tx)$ for all $x \in X$.)

Use the Uniform Boundedness Principle to prove that T is bounded.

See next page for problems 4 and 5...

Problem 4 (8 + 6 + 6 + 8 = 28 points)

- Let X be a Hilbert space over \mathbb{C} , and assume that $T \in B(X)$.
- (a) Show that there exist selfadjoint operators $U, V \in B(X)$ such that T = U + iV.
- (b) Show that T is normal if and only if UV = VU.
- For parts (c) and (d) assume that T is normal.
- (c) Show that $||Tx||^2 = ||Ux||^2 + ||Vx||^2$ for all $x \in X$.
- (d) Show that if $0 \in \sigma(T)$, then $0 \in \sigma(U) \cap \sigma(V)$.

Problem 5 (10 points)

Equip the linear space $X = \mathcal{C}([0, 2], \mathbb{C})$ with the following norm:

$$||f|| = \int_0^2 |f(x)| \, dx, \qquad f \in X.$$

Let $g(x) = e^{-5ix}$. Prove that there exists a functional $\varphi \in X'$ such that

 $\varphi(g) = -6 + 2i \qquad \text{and} \qquad \|\varphi\| = \sqrt{10}.$

End of test ("version 2", 90 points)

Solution of problem 1 (5 + 10 + 5 = 20 points)

Equip the linear space $\mathcal{C}([0,1],\mathbb{K})$ with the following norms:

$$||f||_1 = \int_0^1 |f(x)| \, dx$$
 and $||f||_p = \left(\int_0^1 |f(x)|^p \, dx\right)^{1/p}$,

where p > 1. The sequence (f_n) is given by

$$f_n(x) = \begin{cases} n^{1/p} & \text{if } 0 \le x < 1/n, \\ x^{-1/p} & \text{if } 1/n \le x \le 1. \end{cases}$$

So in version 1 and 2 we have p = 3 and p = 5, respectively.

(a) With 1/p + 1/q = 1 we have Hölder's inequality:

$$\int_0^1 |f(x)g(x)| \, dx \le \left(\int_0^1 |f(x)|^p \, dx\right)^{1/p} \left(\int_0^1 |g(x)|^q \, dx\right)^{1/q}.$$

(3 points)

In particular, with g(x) = 1 for all $x \in [0, 1]$ we obtain

$$\int_0^1 |f(x)| \, dx \le \left(\int_0^1 |f(x)|^p \, dx\right)^{1/p},$$

which proves the desired inequality. (2 points)

(2 points)

(b) We have that

$$\|f_n\|_1 = \int_0^{1/n} n^{1/p} \, dx + \int_{1/n}^1 x^{-1/p} \, dx$$
$$= n^{-\frac{p-1}{p}} + \left[\frac{p}{p-1} x^{\frac{p-1}{p}}\right]_{1/n}^1$$
$$= \frac{p}{p-1} - \frac{1}{p-1} \cdot n^{-\frac{p-1}{p}}.$$

Version 1. For p = 3 we have $||f_n||_1 = \frac{3}{2} - \frac{1}{2}n^{-\frac{2}{3}}$. Version 2. For p = 5 we have $||f_n||_1 = \frac{5}{4} - \frac{1}{4}n^{-\frac{4}{5}}$.

(5 points)

We have that

$$||f_n||_p^p = \int_0^{1/n} n \, dx + \int_{1/n}^1 x^{-1} \, dx = 1 + \left[\log(x)\right]_{1/n}^1 = 1 + \log(n).$$

which gives $||f_n||_p = (1 + \log(n))^{1/p}$.

Version 1. For p = 3 we have $||f_n||_3 = (1 + \log(n))^{1/3}$.

Version 2. For p = 5 we have $||f_n||_5 = (1 + \log(n))^{1/5}$.

(5 points)

(c) From part (a) we know that $||f||_1 \leq ||f||_p$ for all $f \in \mathcal{C}([0, 1], \mathbb{K})$. Therefore, the norms $|| \cdot ||_1$ and $|| \cdot ||_3$ are equivalent if and only if there exists a constant c > 0 such that

 $||f||_p \le c||f||_1 \quad \text{for all} \quad f \in \mathcal{C}([0,1],\mathbb{K}).$

In particular, for the sequence of part (b) we must have

 $||f_n||_p \le c ||f_n||_1 \quad \text{for all} \quad n \in \mathbb{N}.$

But this is a contradiction since the left hand side is unbounded, whereas the right hand side is bounded. Therefore, the two norms are not equivalent. (5 points)

Solution of problem 2 (5 + 3 + 7 + 5 = 20 points)

(a) Since the function $x \mapsto x^2$ maps the interval [0, 1] bijectively onto itself we have

$$||Tf||_{\infty} = \sup_{x \in [0,1]} |Tf(x)| = \sup_{x \in [0,1]} |f(x^2)| = \sup_{x \in [0,1]} |f(x)| = ||f||_{\infty}.$$

(3 points)

Therefore, the operator norm of T is given by

$$||T|| = \sup_{f \neq 0} \frac{||Tf||_{\infty}}{||f||_{\infty}} = 1.$$

(2 points)

- (b) The equality $f(x) = f(x^2)$ holds for all constant functions. Therefore, any nonzero constant function f is an eigenvector for the eigenvalue $\lambda = 1$. (3 points)
- (c) Consider the operator

$$S: \mathcal{C}([0,1],\mathbb{K}) \to \mathcal{C}([0,1],\mathbb{K}), \quad Sf(x) = f(\sqrt{x}).$$

We have

$$STf(x) = f(\sqrt{x^2}) = f(x)$$
 and $TSf(x) = f(\sqrt{x^2}) = f(x)$,

which means that ST = TS = I. (4 points)

By a similar argument as in part (a) it follows that S is bounded. Therefore, the operator T is invertible. (3 points)

(d) Method 1. The space $\mathcal{C}([0,1],\mathbb{K})$ is infinite-dimensional. If T were compact, then we would have $0 \in \sigma(T)$. However, in part (c) we have established that T is invertible, which means that $0 \in \rho(T)$. Therefore, T is not compact. (5 points)

Method 2. If T is compact, then so is $I = TT^{-1}$. But then the closed unit ball is compact. However, this is not possible because the space $\mathcal{C}([0,1],\mathbb{K})$ is infinite-dimensional. Therefore, T is not compact. (5 points)

Solution of problem 3 (12 points)

Let $x \in X$ be arbitrary. By a consequence of the Hahn Banach theorem we have

$$\sup\{|(f \circ T)(x)| : f \in Y', ||f|| = 1\} = \sup\{|f(Tx)| : f \in Y', ||f|| = 1\}$$
$$= ||Tx|| < \infty.$$

(3 points)

The Uniform Boundedness Principle implies that

$$c := \sup\{\|f \circ T\| : f \in Y', \|f\| = 1\} < \infty.$$

(3 points)

In particular, if $f \in Y'$ has norm ||f|| = 1, then

$$|(f \circ T)(x)| \le ||f \circ T|| \, ||x|| \le c ||x||.$$

(3 points)

Taking the supremum over all such elements f gives

$$||Tx|| = \sup\{|(f \circ T)(x)| : f \in Y', ||f|| = 1\} \le c||x||.$$

Since $x \in X$ is arbitrary, it follows that T is bounded. (3 points)

Solution of problem 4 (8 + 6 + 6 + 8 = 28 points)

(a) Define the operators

$$U = \frac{1}{2}(T + T^*)$$
 and $V = \frac{1}{2i}(T - T^*).$

Clearly, $U, V \in B(X)$ since they are linear combinations of the bounded operators T and T^* .

(2 points)

The operator U is selfadjoint since

$$U^* = \frac{1}{2}(T^* + T) = \frac{1}{2}(T + T^*) = U$$

(2 points)

The operator V is selfadjoint since

$$V^* = -\frac{1}{2i}(T^* - T) = \frac{1}{2i}(T - T^*) = V.$$

(2 points)

Finally, we have that

$$U + iV = \frac{1}{2}(T + T^*) + \frac{1}{2}(T - T^*) = T.$$

(2 points)

(b) The adjoint of T = U + iV is given by $T^* = U^* - iV^* = U - iV$. Computing their products gives

$$T^*T = (U - iV)(U + iV) = U^2 + V^2 + i(UV - VU),$$

$$TT^* = (U + iV)(U - iV) = U^2 + V^2 + i(VU - UV).$$

(3 points)

By definition, T is normal when $T^*T = TT^*$. This holds if and only if

$$UV - VU = VU - UV,$$

or, equivalently, UV = VU. (3 points)

(c) Since T is normal, we have that UV = VU. This gives

$$||Tx||^{2} = (Tx, Tx) = (T^{*}Tx, x) = ((U^{2} + V^{2})x, x) = (U^{2}x, x) + (V^{2}x, x).$$

(3 points)

Since U and V are selfadjoint, we have

$$(U^{2}x, x) + (V^{2}x, x) = (Ux, Ux) + (Vx, Vx) = ||Ux||^{2} + ||Vx||^{2}.$$

(3 points)

(d) Version 1. Assume that $0 \in \rho(U)$. (In case $0 \in \rho(V)$ we can argue similarly.)

Since U is selfadjoint, and thus normal, there exists a constant c > 0 such that $||Ux|| \ge c||x||$ for all $x \in X$. (This follows from the characterization of the resolvent set for a normal operator.)

(4 points)

By part (c) it follows for all $x \in X$ that

$$||Tx||^{2} = ||Ux||^{2} + ||Vx||^{2} \ge c^{2} ||x||^{2},$$

which implies that $||Tx|| \ge c ||x||$. Since T is normal, we conclude that $0 \in \rho(T)$. (4 points)

Version 2. Assume that $0 \in \sigma(T)$. Since T is normal, it follows that $\lambda = 0$ is an approximate eigenvalue of T. Therefore, there exists a sequence (x_n) in X such that $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $||Tx_n|| \to 0$. (4 points)

By part (c) it follows that

$$||Ux_n||^2 \le ||Ux_n||^2 + ||Vx_n||^2 = ||Tx_n||^2 \to 0,$$

which means that $\lambda = 0$ is also an approximate eigenvalue of U. Therefore, $0 \in \sigma(U)$. By the same reasoning, we have that $0 \in \sigma(V)$. (4 points)

Solution of problem 5 (10 points)

Version 1. Define the map

$$\varphi : \operatorname{span} \{g\} \to \mathbb{C}, \quad \varphi(\lambda g) = \lambda(4 - 2i).$$

With $\lambda = 1$ we have that $\varphi(g) = 4 - 2i$. (2 points)

Since ||g|| = 2 we have that

$$\|\varphi\| = \sup_{\lambda \neq 0} \frac{|\varphi(\lambda g)|}{\|\lambda g\|} = \sup_{\lambda \neq 0} \frac{|\lambda|\sqrt{20}}{2|\lambda|} = \sqrt{5}.$$

(5 points)

Now apply the Hahn-Banach theorem to extend φ to the entire space X while preserving the norm.

(3 points)

Version 2. Define the map

$$\varphi : \operatorname{span} \{g\} \to \mathbb{C}, \quad \varphi(\lambda g) = \lambda(-6 + 2i).$$

With $\lambda = 1$ we have that $\varphi(g) = -6 + 2i$. (2 points)

Since ||g|| = 2 we have that

$$\|\varphi\| = \sup_{\lambda \neq 0} \frac{|\varphi(\lambda g)|}{\|\lambda g\|} = \sup_{\lambda \neq 0} \frac{|\lambda|\sqrt{40}}{2|\lambda|} = \sqrt{10}.$$

(5 points)

Now apply the Hahn-Banach theorem to extend φ to the entire space X while preserving the norm.

(3 points)